
ModelFlow_sandbjerg_2021-Copy3

November 16, 2021

[41]: %matplotlib inline

[42]: import matplotlib.pyplot as plt
import pandas as pd # Python data science library
#import numpy as np
#import re
#import sys

from modelclass import model
#import modelpattern as pt
#import modelmanipulation as mp # Module for model text processing
#from modelmanipulation import explode

1 ModelFlow, A library to manage and solve Models
Sandbjerg november 2021

Ib Hansen Ib.hansen.iv@gmail.com

Work done at Danmarks Nationalbank, ECB and Hansen Ølkonometri.

Problem: Stress-test model for banks Complicated and slow Excel workbook Difficult to maintain
and change

Solution: Separate specification (at a high level of abstraction) and solution code. Python comes
batteries included. Data management, text processing, visualization …

Implementation of minimum workable toolkit A transpiler: Takes a model in a domain
specific Business logic language: Create solver and utility functions using Python libraries.

Refactor and refine Larger models, Faster transpiler, Newton and Gauss solvers, Logical struc-
ture, Derivatives, Visualization, Front ends …

1.1 Refine and refactor
To suit the needs of the different models thrown at the toolkit.

Specify very large (or small) models as concise and intuitive equations. 1 million equation
and more can be handled.

Agile model development Model are specified at a high level of abstraction and are processed
fast. Experiments with model specification are agile and fast.

1

Onboarding models and combining from different sources. Recycling and combining models
specified in different ways: Excel, Latex, Dynare, Python or other languages.

A rich set of analytical tools for model and result analytic helps to understand the model
and its results.

The user can extend and modify the tools to her or his needs. All code is in Python and the
core is quite small.

1.2 What is a Model in ModelFlow
ModelFlow is created to handle models. The term model can mean a lot of different concepts.

The scope of models handled by ModelFlow is discrete models which is the same for each time
frame, can be formulated as mathematical equations and can have lagged and leaded variables.
This allows the system to handle quite a large range of models.

A model with:

• n number of endogeneous variables
• k number of exogeneous variables
• u max lead of endogeneous variables
• r max lag of endogeneous variables
• s max lag of exogeneous variables
• t time frame (year, quarter, day second or another another unit)

can be written in two ways, normalized or un-normalized form

1.2.1 Normalized model

Each endogenous variable is on the left hand side one time - and only one time.

y1t = f1(y1t+u..., y
n
t+u..., y

2
t ..., y

n
t ...y

1
t−r..., y

n
t−r, x

1
t ...x

k
t , ...x

1
t−s..., x

k
t−s) (1)

y2t = f2(y1t+u..., y
n
t+u..., y

1
t ..., y

n
t ...y

1
t−r..., y

n
t−r, x

1
t ...x

k
t , ...x

1
t−s..., x

k
t−s) (2)

... (3)
ynt = fn(y1t+u..., y

n
t+u..., y

1
t ..., y

n−1
t ...y1t−r..., y

n
t−r, x

1
t ...x

r
t , x...

1
t−s..., x

k
t−s) (4)

Written in matrix notation where yt and xt are vectors of endogenous/exogenous variables for time
t

yt = F(yt+u · · ·yt · · ·yt−r,xt · · ·xt−s) (5)

ModelFlow allows variable to be scalars, matrices, arrays or pandas dataframes.

1.2.2 Un-normalized form

Some models can not easy be specified as normalized formulas. Especially models with equilibrium
conditions can more suitable be specified in the more generalized un-normalized form.

Written in matrix notation like before:

2

https://en.wikipedia.org/wiki/Model

0 = F(yt+u · · ·yt · · ·yt−r,xt · · ·xt−s) (6)

The number of endogenous variables and equations should still be the same.

Model solution For a normalized model:

yt = F(yt+u · · ·yt · · ·yt−r,xt · · ·xt−r) (7)

a solution is y∗
t so that:

y∗
t = F(yt+u · · ·y∗

t · · ·yt−r,xt · · ·xt−r) (8)

For the un-normalized model:
0 = F(yt+u · · ·yt · · ·yt−r,xt · · ·xt−s) (9)

a solution y∗
t is

0 = G(yt+u · · ·y∗
t · · ·yt−r,xt · · ·xt−r) (10)

Some models can have more than one solution. In this case the solution can depend on the starting
point of the solution algorithm.

1.3 Model derivatives
Both for solving and for analyzing the causal structure of a model it can be useful to define different
matrices of derivatives for a model F() like this:

At =
∂F
∂yT

t

Derivatives with respect to current endogeneous variables (11)

(12)

Ei
t =

∂F
∂yT

t−i

i = 1, · · · , r Derivatives with respect to lagged endogeneous variables (13)

(14)

Dj
t =

∂F
∂yT

t+j

j = 1, · · · , u Derivatives with respect to leaded endogeneous variables (15)

(16)

Fk
t =

∂F
∂xT

t−i

k = 0, · · · , s Derivatives with respect to current and lagged exogeneous variables

(17)
(18)

For un-normalized models the derivative matrices are just the dervatives of G instead of F

3

1.4 Model solutions
There are numerous methods to solve models (systems) as mentioned above. ModelFlow can apply
3 different types of model solution methods:

1. If the model has no contemporaneous feedback, the equations can be sorted Topological
and then the equations can be calculated in the topological order. This is the same as a
spreadsheet would do.

2. If the model has contemporaneous feedback model is solved with an iterative method.
Here variants of well known solution methods are used:
1. Gauss-Seidle (Gauss) which can handle large systems, is fairly robust and don’t need

the calculation of derivatives
2. Newthon-Raphson (Newton) which requires the calculation of derivatives and solving

of a large linear system but typically converges in fewer iterations.

Nearly all of the models solved by ModelFlow don’t contain leaded endogenous variables. Therefor
they can be solved one period at a time. For large sparse nonlinear models Gauss works fine. It
solves a model quite fast and we don’t need the additional handiwork of handling derivatives and
large linear systems that Newton methods require. Moreover many models in question do not have
smooth derivatives. The order in which the equation are calculated can have a large impact on the
convergence speed.

For some models the Newton algorithm works better. Some models are not able to converge with
Gauss-Seidle other models are just faster using Newton. Also the ordering of equations does not
matter for the convergence speed.

However some models like FRB/US and other with rational expectations or model consistent
expectations contains leaded endogenous variables. Such models typical has to be solved as one
system for for all projection periods. In this case, the Gauss variation Fair-Taylor or Stacked-
Newton Method. The stacked Newton methods can be used in all cases, but if not needed, it
will usually use more memory and be slower.

Model No contemporaneous feedback Contemporaneous feedback Leaded variables
Normalized Calculate Gauss or Newton Fair Taylor or Stacked Newton
Un-normalized Newton Newton Stacked Newton

2 Implementation of solving algorithms in Python
Solving a model entails a number of steps:

1. Specification of the model
2. Create a dependency graph.
3. Establish a solve order and separate the the model into smaller sub-models
4. Create a python function which can evaluating fi(y

k
1 , · · · , yki−1, y

k−1
i+1 , · · · , yk−1

n , z)
5. If needed, create a python function which can evaluate the Jacobimatrices: A,E,D or �A, �E, �D
6. Apply a solve function using the elements above to the data.

4

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method
https://en.wikipedia.org/wiki/Newton%27s_method
https://fairmodel.econ.yale.edu/rayfair/pdf/1983A.PDF

2.0.1 Normalized model

Calculation, No contemporaneous feedback In systems with no lags each period can be
solved in succession The equations has to be evaluated in a logical (topological sorted) order.

Let z be all predetermined values: all exogenous variable and lagged endogenous variable.

Order the n endogeneous variables in topological order.

For each time period we can find a solution by

for i = 1 to n

yki = fi(y
k
1 , · · · , yki−1, y

k−1
i+1 , · · · , yk−1

n , z)

The Gauss-Seidel algorithm. Normalized models with contemporaneous feedback The
Gauss-Seidel algorithm is quite straight forward. It basically iterate over the formulas, until con-
vergence.

let: z be all predetermined values: all exogenous variable and lagged endogenous variable. n be the
number of endogenous variables. α dampening factor which can be applyed to selected equations

For each time period we can find a solution by doing Gauss-Seidel iterations:

for k = 1 to convergence

for i = 1 to n

yki = (1− α) ∗ yk−1
i + αfi(y

k
1 , · · · , yki−1, y

k−1
i+1 , · · · , yk−1

n , z)

The Newton-Raphson algorithme. Models with contemporaneous feedback Let z be a
vector all predetermined values: all exogenous variable and lagged endogenous variable.

For each time period we can find a solution by doing Newton-Raphson iterations:

for k = 1 to convergence

y = F(yk−1, z)

yk = y − α× (A − I)−1 × (y − yk−1)

The expression: (A − I)−1 × (y − yk−1) is the same as the solution to:

y − yk−1 = (A − I)× x

This problem can be solved much more efficient than performing (A − I)−1 × (y − yk−1)

The Scipy library provides a number of solvers to this linear set of equations. There are both solvers
using factorization and iterative methods, and there are solvers for dense and sparce matrices. All
linear solvers can easily be incorporated into ModelFlows Newton-Raphson nonlinear solver.

Stacked Newton-Raphson all periods in one go. Models with both leaded and lagged
endogeneous variable If the model has leaded endogenous variables it can in general not be
solved one time period at a time. We have to solve the model for all time frames as one large
model.

5

�A =

A1 D1
1 D2

1 0 0 0 0 0
E1

2 A2 D1
2 D2

2 0 0 0 0
E2

3 E1
3 A3 D1

3 D2
3 0 0 0

E3
4 E2

4 E1
4 A4 D1

4 D2
4 0 0

0 E3
5 E2

5 E1
5 A5 D1

5 D2
5 0

0 0 E3
6 E2

6 E1
6 A6 D1

6 D2
6

0 0 0 E3
7 E2

7 E1
7 A7 D1

7
0 0 0 0 E3

8 E2
8 E1

8 A8

�y =

y1
y2
y3
y4
y5
y6
y7
y8

�F =

F
F
F
F
F
F
F
F

Now the solution algorithme looks like this.

Again let z be a vector all predetermined values: all exogenous variable and lagged endogenous
variable.

for k = 1 to convergence > �y = �F(�yk−1, �z) > �yk = �y − α× (�A − I)−1 × (�y − �yk−1)

Notice that the model F is the same for all time periods. However, as time can be an exogenous
variable the result of F can depend on time. This allows us to specify terminal conditions.

The update frequency of �A and α and the value of α can be set to manage the speed and stability
of the algorithm.

We solve the problem:
(�y − �yk−1) = (�A − I)× x

instead of inverting A.

Python gives access to very efficient sparse libraries. The Scipy library utilizes the Intel® Math
Kernel Library. Any of the available routines for solving linear systems can easily be incorporated.

2.1 Create a model instance which calculates the Jacobi matrices.
The derivatives of all formulas with respect to all endogenous variables are needed.

First step is to specifying a model in the business logic language which calculate all the non-zero
elements In ModelFlow this can be done by symbolic, by numerical differentiation or by a
combination.

The formula for calculating ∂numerator

∂denominator(−lag)
is written as:

< numerator >__p__< denominator >__lag__< lag> = derivative expression

Just another instance of a ModelFlow model class.

2.1.1 A small Solow model to show the construction of the Jacobi matrix.

An example can be helpful First a small model is defined - in this case a solow growth model:

[43]: fsolow = '''\
Y = a * k**alfa * l **(1-alfa)
C = (1-SAVING_RATIO) * Y
I = Y - C
diff(K) = I-depreciates_rate * K(-1)

6

https://scipy.org/scipylib/index.html
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl

diff(l) = labor_growth * L(-1)
K_i= K/L '''
msolow = model.from_eq(fsolow)

[44]: print(msolow.equations)

FRML <> Y = A * K**ALFA * L **(1-ALFA) $
FRML <> C = (1-SAVING_RATIO) * Y $
FRML <> I = Y - C $
FRML <> K=K(-1)+(I-DEPRECIATES_RATE * K(-1))$
FRML <> L=L(-1)+(LABOR_GROWTH * L(-1))$
FRML <> K_I= K/L $

2.1.2 Create some data and solve the model

[45]: N = 100
df = pd.DataFrame({'L':[100]*N,'K':[100]*N})
df.loc[:,'ALFA'] = 0.5
df.loc[:,'A'] = 1.
df.loc[:,'DEPRECIATES_RATE'] = 0.05
df.loc[:,'LABOR_GROWTH'] = 0.01
df.loc[:,'SAVING_RATIO'] = 0.05
msolow(df,max_iterations=100,first_test=10,silent=1);

2.1.3 Create an differentiation instance of the model

Use symbolic differentiation when possible else use numerical differentiation.

[46]: from modelnewton import newton_diff
msolow.smpl(3,5); # we only want a few years

2.1.4 Symbolic differentiation

[47]: newton = newton_diff(msolow)
print(newton.diff_model.equations)

FRML <> C__p__Y___lag___0 = 1-SAVING_RATIO $
FRML <> I__p__C___lag___0 = -1 $
FRML <> I__p__Y___lag___0 = 1 $
FRML <> K__p__I___lag___0 = 1 $
FRML <> K__p__K___lag___1 = 1-DEPRECIATES_RATE $
FRML <> K_I__p__K___lag___0 = 1/L $
FRML <> K_I__p__L___lag___0 = -K/L**2 $
FRML <> L__p__L___lag___1 = LABOR_GROWTH+1 $
FRML <> Y__p__K___lag___0 = A*ALFA*K**ALFA*L**(1-ALFA)/K $
FRML <> Y__p__L___lag___0 = A*K**ALFA*L**(1-ALFA)*(1-ALFA)/L $

7

2.1.5 Numerical differentiation

[48]: newton2 = newton_diff(msolow,forcenum=1)
print(newton2.diff_model.equations)

FRML <> C__p__Y___lag___0 =
(((1-SAVING_RATIO)*(Y+0.0025))-((1-SAVING_RATIO)*(Y-0.0025)))/0.005 $
FRML <> I__p__C___lag___0 = ((Y-(C+0.0025))-(Y-(C-0.0025)))/0.005 $
FRML <> I__p__Y___lag___0 = (((Y+0.0025)-C)-((Y-0.0025)-C))/0.005 $
FRML <> K__p__I___lag___0 = ((K(-1)+((I+0.0025)-DEPRECIATES_RATE*K(-1)))-(K(-1)
+((I-0.0025)-DEPRECIATES_RATE*K(-1))))/0.005 $
FRML <> K__p__K___lag___1 = (((K(-1)+0.0025)+(I-DEPRECIATES_RATE*(K(-1)+0.0025)
))-((K(-1)-0.0025)+(I-DEPRECIATES_RATE*(K(-1)-0.0025))))/0.005 $
FRML <> K_I__p__K___lag___0 = (((K+0.0025)/L)-((K-0.0025)/L))/0.005 $
FRML <> K_I__p__L___lag___0 = ((K/(L+0.0025))-(K/(L-0.0025)))/0.005 $
FRML <> L__p__L___lag___1 = (((L(-1)+0.0025)+(LABOR_GROWTH*(L(-1)+0.0025)))-((L
(-1)-0.0025)+(LABOR_GROWTH*(L(-1)-0.0025))))/0.005 $
FRML <> Y__p__K___lag___0 =
((A*(K+0.0025)**ALFA*L**(1-ALFA))-(A*(K-0.0025)**ALFA*L**(1-ALFA)))/0.005 $
FRML <> Y__p__L___lag___0 =
((A*K**ALFA*(L+0.0025)**(1-ALFA))-(A*K**ALFA*(L-0.0025)**(1-ALFA)))/0.005 $

2.1.6 Display the full stacked matrix

To make the sparcity clear all zero values are shown as blank

[49]: stacked_df = newton.get_diff_df_tot()
stacked_df.applymap(lambda x:f'{x:,.2f}' if x != 0.0 else ' ')

[49]: per 3 4 \
var C I K K_I L Y C I K K_I
per var
3 C -1.00 0.95

I -1.00 -1.00 1.00
K 1.00 -1.00
K_I 0.01 -1.00 -0.01
L -1.00
Y 0.51 0.49 -1.00

4 C -1.00
I -1.00 -1.00
K 0.95 1.00 -1.00
K_I 0.01 -1.00
L 1.01
Y 0.51

5 C
I
K 0.95
K_I
L

8

Y

per 5
var L Y C I K K_I L Y
per var
3 C

I
K
K_I
L
Y

4 C 0.95
I 1.00
K
K_I -0.01
L -1.00
Y 0.49 -1.00

5 C -1.00 0.95
I -1.00 -1.00 1.00
K 1.00 -1.00
K_I 0.01 -1.00 -0.01
L 1.01 -1.00
Y 0.51 0.49 -1.00

2.2 Speeding up solving through Just In Time compilation (Numba)
Python is an interpreted language. So slow

Numba is a Just In time Compiler. Experience with a Danish model (1700 equations) shows
a speedup from 5 million floating point operations per second (MFlops) to 800 MFlops. But
compilation takes time.

Also experiments with the Cython library has been performed. This library will translate the
Python code to C++ code. Then a C++ compiler can compile the code and the run time will be
improved a lot.

Also matrices can be used. This will force the use of the highly optimized routines in the Numpy
library.

2.3 Specification of model in Business Logic Language
The Business logic Language is a Python like language, where each function fi from above is
specified as:

FRML <options> <left hand side> = <right hand side> $...

The <left hand side> should not contain transformations, but can be a tuple which match the
<right hand side>. A $ separates each formular.

Time is implicit, so vart is written as var, while vart−1 is written as var(-1) and vart+1 is written
as var(+1). Case does not matter. everything is eventual made into upper case.

9

It is important to be able to create short and expressive models, therefor. Stress test models should
be able to handle many bank and sectors without repeating text. So on top of the Business logic
language. there is a Macro Business Logic language. The primary goal of this is to allow
(conditional) looping and normalization of formulas.

The user can specify any conforming python function on the right hand side

3 Onboarding a model
**Python has incredible strong tools both for interacting with other systems like Excel and Matlab.
Some of the sources, from which models has been recycled are:

• Latex
– Model written in Latex - with some rules to allow text processing.

• Eviews
• Excel

– Calculation model from Excel workbook

– Grabbing coefficients from excel workbooks
• Matlab

– Wrapping matlab models into python functions, which can be used in ModelFlow

– Grabbing coefficients from matlab .mat files.
• Aremos models
• TSP models

Grabbing models and transforming them to Business logic language usually requires a tailor-made
Python program. However in the ModelFlow folder there are different examples of such grabbing.

3.1 The model structure
The logical structure of a model is useful for several reasons.

The structure of contemporaneous endogenous variable is used to establish the calculation
sequence and identify simultaneous systems (strong graphcomponents).

The structure of a model can be seen as a directed graph. All variables are node in the graph. If
a variable b is on the right side of the formula defining variable a there is an edge from b to a.

3.1.1 First we define the nodes (vertices) of the dependency graph.

The set of nodes is the set of relevant variables. Actually we want to look at two dependency
graphs: one containing all variables, and one only containing endogenous contemporaneous variable
(the yjt ’s). So we define two sets S and E:

All endogenous, exogenous, contemporaneous and lagged variables

S = {yjt−i|j = 1..n, i = 1..r} ∪ {xjt−i|j = 1..k, i = 1..s}

Contemporaneous endogenous variables

E = {yjt |j = 1..n}

10

Naturally: E ⊆ S

3.1.2 Then we define the edges of the dependency graph.

Again two sets are relevant:

From all variables to contemporaneous endogenous variables

T = {(a, b)|a ∈ E, b ∈ S} a is on the right side of b

3.1.3 And we can construct useful dependency graphs

The we can define a graph TG which defines the data dependency of the model:

TG = (S, T) The graph defined by nodes S and edges T.

TG can be used when exploring the dependencies in the model. This is useful for the user when
drilling down the results.

However for preparing the solution a smaller graph has to be used. When solving the model for a
specific period both exogenous and lagged endogenous variables are predetermined. Therefor we
define the the dependency graph for contemporaneous endogenous variables:

TE = (E, Te) The graph defined by nodes S and edges Te.

TE is used to determine if the model is simultaneous or not.

If the model is not simultaneous, then TE have no cycles, that is, it is a Directed Acyclical Graph
(DAG). Then we can find an order in which the formulas can be calculated. This is called a
topological order.

The topological order is a linear ordering of nodes (vertices) such that for every edge (v,u), node v
comes before u in the ordering.

A topological order is created by doing a topological sort of TE.

If TE, the dependency graph associated with F is not a Directed Acyclical Graph (A DAG). Then
F has contemporaneous feedback and is simultaneous. Or - in Excel speak - the model has circular
references. And we need to use an iterative methods to solve the model. Sometime a model contains
several simultaneous blocks. Then each block is a strong element of the graph. Each formula which
is not part of a simultaneous bloc is in itself a strong element.

A condensed graph where each strong element is condensed to a node is a DAG. So the condensed
graph have a topological order. This can be used when solving the model.

The dependency graphs are constructed, analyzed and manipulated through the Networkx Python
library.

Total dependency graphs This shows TG mentioned above.

[50]: msolow.drawmodel(title='Total graph',all=0)

11

Total graph

DEPRECIATES_RATE: K:

Y:

I:

C:

A:

K_I:

K(-1):K

L(-1):L

L:LABOR_GROWTH:

SAVING_RATIO:

ALFA:

3.1.4 The dependency graph for contemporaneous endogenous variables (TE)

[51]: msolow.drawendo(title='Contemporaneous endo')

Contemporaneous endo

Y:
I:C:

K:

K_I:
L:

And the adjacency matrix of the graph The graph can also be represented as a adjacency
matrix. This is a is a square matrix A. Ai,j is one when there is an edge from node i to node j, and
zero when there is no edge.

If the graph is a DAG the adjacency matrix, and the elements are in a topological order, is a lover
triangular matrix.

[52]: a = msolow.plotadjacency(size=(8,8))

12

3.2 Solution ordering
3.2.1 For normalized models:

For a model without contemporaneous feedback, the topoligical sorted order is then used as
calculating order.

For a model with contemporaneous feedback and no leaded variables, ModelFlow divides a
model into three parts. A recursive prolog model, a recursive epilog model, the rest is the
simultaneous core model. Inside the core model the ordering of the equations are preserved. It
may be that the core model contains several strong componens, which each could be solved as a
simultanous system, however it is solved as one simultanous system.

13

Only the core model is solved as a simultaneous system. The prolog model is calculated once before
the solving og the simultaneous system, the epilog model is calculated once after the solution of
the simultanous system. For most models this significantly reduce the computational burden of
solving the model.

For a model with leaded variables where the model is stacked. All equations are created equal.

[53]: # The preorder
print(f'The prolog variables {msolow.preorder}')
print(f'The core variables {msolow.coreorder}')
print(f'The epilog variables {msolow.epiorder}')

The prolog variables ['L']
The core variables ['Y', 'C', 'I', 'K']
The epilog variables ['K_I']

4 Some Model manipulation capabilities
4.1 Model inversion aka Target/instruments or Goal Seek
In ordet to answer questions like:

• How much capital has to be injected in order to maintain a certain GDP level in a stressed
scenario?

• How much loans has to be shredded by the banks in order to maintain a minimum level of
capital (slim to fit)?

• How much capital has to be injected in order to keep all bank above a certain capital threshold
?

• What probability of transmission result in infected 2 weeks later

The model instance is capable to “invert” a model. To use the terminology of Tinbergen(1955)
that is to calculate the value of some exogenous variables - the instruments which is required in
order to achieve a certain target value for some endogenous variables - the targets.

To use the terminology of Excel it is a goal/seek functionality with multiple cells as goals and
multiple cells as targets.

The problem can be thought as follows: From the generic description of a model: yt = F(xt). Here
xt are all predetermined variables - lagged endogenous and all exogenous variables.

It can be useful to allow a delay, when finding the instruments. In this case we want to look at
yt = F(xt−delay)

Think of a condensed model (G) with a few endogenous variables(ȳt): the targets and a few
exogenous variables(x̄t−delay): the instrument variables. All the rest of the predetermined variables
are fixed:
ȳt = G(x̄t−delay)

If we invert G we have a model where instruments are functions of targets: ¯xt−delay = G−1(ȳt).
Then all we have to do is to find G−1(ȳt)

The approximated Jacobi matrix of G : Jt ≈ ∆G
∆x̄t−delay

is used to find the instruments

14

4.1.1 And how to solve for the instruments

For most models x̄t−delay = G−1(ȳt) do not have a nice close form solution. However it can be
solved numerically. We turn to Newton–Raphson method.

So x̄t−delay = G−1(ȳ∗
t) will be found using :

for k = 1 to convergence

x̄k
t−delay,end = x̄k−1

t−delay,end + J−1
t × (ȳ∗

t − ȳt
k−1)

ȳk
t = G(x̄k

t−delay)

convergence: | ȳ∗
t − ȳt |≤ ϵ

Now we just need to find:

Jt =
∂G

∂x̄t−delay

A number of differentiation methods can be used (symbolic, automated or numerical). ModelFlow
uses numerical differentiation, as it is quite simple and fast.

Jt ≈ ∆G
∆x̄t−delay

That means that we should run the model one time for each instrument, and record the effect on
each of the targets, then we have Jt

In order for Jt to be invertible there has to be the same number of targets and instruments.

However, each instrument can be a basket of exogenous variable. They will be adjusted in fixed
proportions. This can be useful for instance when using bank leverage as instruments. Then the
leverage instrument can consist of several loan types.

You will notice that the level of x̄ is updated (by J−1
t × (ȳ∗

t − ȳt
k−1)) in all periods from t− delay

to end, where end is the last timeframe in the dataframe. This is useful for many applications
including calibration of disease spreading models and in economic models, where the instruments
are level variable (i.e. not change variables). If this is not suitable, it can be changed in a future
release.

The target/instrument functionality is implemented in the python class targets_instruments
specified in ModelFlows modelinvert module.

4.1.2 An example

The workflow is as follow:

1. Define the targets
2. Define the instruments
3. Create a target_instrument class istance
4. Solve the problem

Step one is to define the targets. This is done by creating a dataframe where the target values are
set.

[54]: msolow.basedf

15

[54]: L K ALFA A DEPRECIATES_RATE LABOR_GROWTH \
0 100.000000 100.000000 0.5 1.0 0.05 0.01
1 101.000000 100.025580 0.5 1.0 0.05 0.01
2 102.010000 100.076226 0.5 1.0 0.05 0.01
3 103.030100 100.151443 0.5 1.0 0.05 0.01
4 104.060401 100.250762 0.5 1.0 0.05 0.01
.. … … … … … …
95 257.353755 185.913822 0.5 1.0 0.05 0.01
96 259.927293 187.661027 0.5 1.0 0.05 0.01
97 262.526565 189.428077 0.5 1.0 0.05 0.01
98 265.151831 191.215119 0.5 1.0 0.05 0.01
99 267.803349 193.022302 0.5 1.0 0.05 0.01

SAVING_RATIO Y C I K_I
0 0.05 0.000000 0.000000 0.000000 0.000000
1 0.05 100.511609 95.486029 5.025580 0.990352
2 0.05 101.038487 95.986562 5.051924 0.981043
3 0.05 101.580575 96.501546 5.079029 0.972060
4 0.05 102.137821 97.030930 5.106891 0.963390
.. … … … … …
95 0.05 218.736417 207.799596 10.936821 0.722406
96 0.05 220.857924 209.815028 11.042896 0.721975
97 0.05 223.002024 211.851922 11.150101 0.721558
98 0.05 225.168912 213.910466 11.258446 0.721153
99 0.05 227.358789 215.990850 11.367939 0.720761

[100 rows x 11 columns]

Define Targets

[55]: target = msolow.basedf.loc[50:,['L','K']]+[30,10]
target.head()

[55]: L K
50 194.463182 135.971544
51 196.107814 136.933236
52 197.768892 137.911105
53 199.446581 138.905161
54 201.141047 139.915414

Then we have to provide the instruments. This is a list of list of tuples. - Each element in the
outer list is an instrument. - Each element in the inner list is an instrument variable - Each element
of the tuple contains a variable name and the associated impulse ∆.

The ∆variable is used in the numerical differentiation. Also if one instrument contains several
variables, the proportion of each variable will be determined by the relative ∆variable.

For this experiment the inner list only contains one variable.

Define Instruments

16

[56]: instruments = [[('LABOR_GROWTH',0.001)] , [('DEPRECIATES_RATE',0.001)]]

Run the experiment

For models which are relative linear we don’t need to update �� for each iteration and time frame. As
our small toy model is nonlinear, the jacobi matrix has to be updated frequently. This is controlled
by the nonlin=True option below.

[57]: result = msolow.invert(msolow.lastdf,target,instruments,nonlin=True)

Finding instruments : 0%| | 0/50

And do the result match the target?

[58]: (result-target).loc[50:,['L','K']].plot();

So we got results for the target variable very close to the target values.

[59]: msolow.smpl(90,100) # we only want a few years

msolow.basedf.Y

[59]: 0 0.000000
1 100.511609
2 101.038487
3 101.580575
4 102.137821

17

…
95 218.736417
96 220.857924
97 223.002024
98 225.168912
99 227.358789
Name: Y, Length: 100, dtype: float64

[60]: msolow.lastdf.Y

[60]: 0 0.000000
1 100.511609
2 101.038487
3 101.580575
4 102.137821

…
95 237.269232
96 239.389730
97 241.532869
98 243.698846
99 245.887858
Name: Y, Length: 100, dtype: float64

4.1.3 Shortfall targets

Above the target for each target variable is a certain values. Sometime we we need targets be-
ing above a certain shortfall value. In this case an instrument should be used to make the
achieve the target threshold only if the target is belove the target. This is activated by an op-
tion:shortfall=True.

This feature can be useful calculating the amount of deleverage needed for banks to achieve a
certain threshold of capital.

4.2 Attribution / Explanation
Experience shows that it is useful to be able to explain the difference between the result from two
runs. The first level of understanding the difference is to look at selected formulas and find out,
how much each input variables accounts for. The second level of understanding the difference is to
look at the attribution of the exogenous variables to the results of the model.

If we have:

y = f(a, b)

and we have two solutions where the variables differs by ∆y,∆a,∆b

How much of ∆y can be explained by ∆a and ∆b ?

Analytical the attributions Ωa and Ωb can be calculated like this:

18

∆y = ∆a
∂f

∂a
(a, b)︸ ︷︷ ︸

Ωa

+∆b
∂f

∂b
(a, b)︸ ︷︷ ︸

Ωb

+Residual

ModelFlow will do a numerical approximation of Ωa and Ωb. This is done by looking at the two
runs of the model:

y0 = f(a0, b0) (19)
y1 = f(a0 +∆a, b0 +∆b) (20)

So Ωa and Ωb can be determined:

Ωfa = f(a1, b1)− f(a1 −∆a, b1) (21)
Ωfb = f(a1, b1)− f(a1, b1 −∆b) (22)

And:

residual = Ωfa +Ωfb − (y1 − y0) (23)

If the model is fairly linear, the residual will be small.

4.2.1 Formula attribution

Attribution analysis on the formula level is performed by the method .dekomp.

4.2.2 Model Attribution

At the model level we start by finding which exogenous variables have changed between two runs.

4.3 Python functions can be incorporated
4.3.1 A mean variance problem

If we look at a fairly general mean variance optimization problem which has been adopted to banks
it looks like this:

19

x Position in each asset(+)/liability(-) type (24)
x Position in each asset(+)/liability(-) type (25)
� Covariance matrix (26)
r Return vector (27)
λ Risk aversion (28)

riskweights Vector of risk weights, liabilities has riskweight = 0 (29)
Capital Max of sum of risk weighted assets (30)

lcrweights Vector of LCR weights, liabilities has lcrweight = 0 (31)
LCR Min of sum of lcr weighted assets (32)

leverageweight Vector of leverage weights, liabilities has leverageweight = 0 (33)
Equity Max sum of leverage weighted positions (34)
Budget initial sum of the positions (35)

(36)

minimize: λxT �x − (1− λ)rTx If λ = 1 minimize risk, if λ = 0 maximize return(37)
subject to: x ≽ xmin Minimum positions (38)

x ≼ xmax Maximum positions (39)
riskweightsTx ≤ Capital Risk weighted assets <= capital (40)

lcrweightsTx ≥ LCR lcr weighted assets >= LCR target (41)
leverageweightTx ≤ equity leverage weighted assets <= equity (42)

1Tx = Budget Sum of positions = B (43)

4.3.2 The mean variance problem in the business language language

Wrap optimizing in the CVX library into a Python function: In the business logic language this
problem can be specified like this:

positions = mv_opt(msigma,return,riskaversion, budget,
[[risk_weights] , [-lcr_weights] , [leverage_weights]],

[capital, -lcr , equity] ,min_position,max_position)

Where the arguments are appropriately dimensioned CVX matrices and vectors.

For a more elaborate example there is an special notebook on the subject of optimization.

Also it should be mentioned that there is an expansion of the basic problem taking transaction cost
into account.

4.4 Stability
Jacobi matrices can be used to evaluate the stability properties of the model. To do this we first
look at a linearized version of the model. We are interested in the effect of shocks to the system.
Will shocks be damped or will they be amplified.

20

4.5 Live models
Showtime

5 Summary
ModelFlow allows easy implementation of models in Python, Which is a powerful and agile lan-
guage. ModelFlow leverage on the rich ecosystem of Python in order to:

• Separates the specification of a model and the code which solves the model. So the user can
concentrate on the economic and not the implementation of the model.

• Can include user specified Python function in the model definition.
• Can solve very large m,odels
• Can solve simultaneous models.
• Keeps tab on the dependencies of the formulas. This allows for easy Tracing of results.
• Can perform model inversion (goal seek) with multiple targets and instruments
• Can attribute changes in results to input variables. Both for individual formulas and the

complete model
• Can include optimizing behavior

The purpose of this notebook has been to give a broad introduction to model management using
ModelFlow. Using the tool requires some knowledge of python. The required knowledge depends
on the complexity of the model. So ModelFlow can be used in Python training.

To get more in-depth knowledge there is a Sphinx based documentation of the library. There you
can find the calling conventions and documentation of all elements.

All suggestions and recommendations are welcome

6 Literature:
Aho, Lam, Sethi, Ullman (2006), Compilers: Principles, Techniques, and Tools (2nd Edition),
Addison-Wesley

Berndsen, Ron (1995), Causal ordering in economic models, Decision Support Systems 15 (1995)
157-165

Danmarks Nationalbank (2004), MONA – a quarterly model of Danish economy

Denning, Peter J. (2006), The Locality Principle, Chapter in Communication Networks and Sys-
tems (J Barria, Ed.). Imperial College Press

Gilli, Manfred (1992), Causal Ordering and Beyond, International Economic Review, Vol. 33, No. 4
(Nov., 1992), pp. 957-971

McKinney, Wes (2011),[pandas: a Foundational Python Library for Data Analysis and Statistics,]
Presented at PyHPC2011](http://www.scribd.com/doc/71048089/pandas-a-Foundational-Python-
Library-for-Data-Analysis-and-Statistics)

Numba (2015) documentation, http://numba.pydata.org/numba-doc/0.20.0/user/index.html

Pauletto, G. (1997), Computational Solution of Large-Scale Macroeconometric Models, ISBN
9781441947789

21

https://kundoc.com/pdf-causal-ordering-in-economic-models-.html
http://www.nationalbanken.dk/da/publikationer/Documents/2003/11/mona_web.pdf
http://denninginstitute.com/pjd/PUBS/locality_2006.pdf
http://www.jstor.org/stable/2527152?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/2527152?seq=1#page_scan_tab_contents
http://numba.pydata.org/numba-doc/0.20.0/user/index.html%20
http://link.springer.com/book/10.1007%2F978-1-4757-2631-2

E. Petersen, Christian & A. Sims, Christopher. (1987). Computer Simulation of Large-Scale Econo-
metric Models: Project Link. International Journal of High Performance Computing Applications
(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.853.6387&rep=rep1&type=pdf)

Tinberger, Jan (1956), Economic policy: Principles and Design, Amsterdam,

7 Footnotes
1: The author has been able to draw on experience creating software for solving the macroeconomic
models ADAM in Hansen Econometric.
2: In this work a number of staff in Danmarks Nationalbank made significant contributions: Jens
Boldt and Jacob Ejsing to the program. Rasmus Tommerup and Lindis Oma by being the first to
implement a stress test model in the system.
3: In ECB Marco Gross, Mathias Sydow and many other collegues has been of great help.
4: The system has benefited from discussions with participants in meetings at: IMF, Bank of Japan,
Bank of England, FED Board, Oxford University, Banque de France, Single Resolution Board
5: Ast stands for: Abstract Syntax Tree
6: Re stands for: Regular expression

[]:

22

https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Regular_expression

	ModelFlow, A library to manage and solve Models
	Refine and refactor
	What is a Model in ModelFlow
	Normalized model
	Un-normalized form

	Model derivatives
	Model solutions

	Implementation of solving algorithms in Python
	Normalized model
	Create a model instance which calculates the Jacobi matrices.
	A small Solow model to show the construction of the Jacobi matrix.
	Create some data and solve the model
	Create an differentiation instance of the model
	Symbolic differentiation
	Numerical differentiation
	Display the full stacked matrix

	Speeding up solving through Just In Time compilation (Numba)
	Specification of model in Business Logic Language

	Onboarding a model
	The model structure
	First we define the nodes (vertices) of the dependency graph.
	Then we define the edges of the dependency graph.
	And we can construct useful dependency graphs
	The dependency graph for contemporaneous endogenous variables (TE)

	Solution ordering
	For normalized models:

	Some Model manipulation capabilities
	Model inversion aka Target/instruments or Goal Seek
	And how to solve for the instruments
	An example
	Shortfall targets

	Attribution / Explanation
	Formula attribution
	Model Attribution

	Python functions can be incorporated
	A mean variance problem
	The mean variance problem in the business language language

	Stability
	Live models

	Summary
	Literature:
	Footnotes

